
OPTOELECTRONICS AND ADVANCED MATERIALS – RAPID COMMUNICATIONS       Vol. 7, No. 9-10, September - October2013, p. 751 - 753 

 

Van der Waals contribution to the lattice potential in 

alkali halides 
 

 

TANVEER AHMAD WANI
*
, PANKAJA SINGH

a 

Department of Applied Sciences, SISTec Gandhi Nagar Bhopal M.P. – 462036 
a
Department of Physics, Government Motilal Vigyan Mahavidhyalaya Bhopal M.P. - 462008 

 

 

 
Van der Waals (VdW) interactions constitute a rather small component in the cohesive energy of ionic crystals. The 
contributions of the VdW and the short range repulsion becomes more and more predominant at successive differentiations 
of the lattice energy as compared to the coulomb contributions because of their particular nature of dependence on the 
lattice parameter. The complete Van der Waals (VdW) contributions to the equilibrium condition and the second order 

elastic constant for NaCl and CsCl structure alkali halides have been derived in this paper.  
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1. Theory 
 

Van der Waals (VdW) interactions constitute a rather 

small component in the cohesive energy of ionic crystals. 

The only terms contributing significantly are the dipole-

dipole (dd) and the dipole-quaderpole (dq) terms varying 

as 1/r
6
 and 1/r

8
respectively, r being the lattice parameter. 

This functional dependence renders the potential a short 

range character. This is why this potential is often 

implicitly included in the short range repulsion usually 

represented as a potential with two disposable parameters. 

However, when a study is directed to establishing the 

relationships between properties related to different order 

derivatives of the lattice energy it becomes necessary to 

retain the separate potential components with their known 

functional forms. 

The contributions of the VdW and the short range 

repulsion becomes more and more predominant at 

successive differentiations of the lattice energy as 

compared to the coulomb contributions because of their 

particular nature of dependence on the lattice parameter. 

Thus even in the case of second order elastic constants 

(SOEC) which involves the second derivatives of the 

lattice energy the VdW contribution acquires a numerical 

magnitude which is of the same order as that due to the 

Coulomb term. It is obvious that the Van der Waals 

potentials should necessarily be included explicitly in the 

lattice energy in the studies of physical properties like the 

third and fourth order elastic constants (TOEC and FOEC) 

related to the first and second order pressure derivatives of 

the bulk modulus respectively, piezoelectric and 

photoelastic properties and the like which involved higher 

order derivatives of the energy function. 

Recent studies (1-3) have proved that even in ionic 

solids the Van der Waals energy is not as insignificant as 

was believed earlier. Numerical values for the parameters 

of this potential evaluated through expressions derived 

from fundamental considerations are now available (3) and 

have proved useful in several studies (4,5). Contributions 

of the potential to the equilibrium conditions and the 

SOEC necessary for lattice dynamical studies have been 

derived by Sangster and Dixon (6) and used by Singh and 

Sanyal (7). However, this analysis assumes the nearest 

neighbour and the next nearest neighbour VdW 

contributions included in the short range repulsion term 

and hence is not quite useful for studies of physical 

properties related to higher derivatives like the TOEC and 

FOEC.  

The VdW potential per unit cell for binary solids can 

be expressed in the form 

 

   ∑ 
   

         
 

 

 

       

         
 

   

         
 

 

 

       

         
   (1) 

 

where the indices +, - indicate the sign of charge of the 

ions, the C and D coefficients are the Van der Waals 

constants, 1 is the cell index and r represents the distance 

between the ions indicated by the suffix pairs inside the 

associated brackets. The evaluation of these potentials and 

their contributions to the equilibrium condition and the 

elastic constants demands the knowledge of several lattice 

sums. These sums are of the form 
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     ⁄               (2) 

 

where a is a lattice parameter equal to half the edge length 

of the unit cube, Xi (i=1,2,3) are the cartesian components 

of the vector r, k, k` are the indices indicating the charge 

of the ions (i.e. +,-), P1, P2, P3 are even integers including 

zero and n is another integer such that n >P1 + P2 + P3 +6. 

The subscript (0k, 1k`) to the bracket under the summation 

sign indicates that the coordinates inside represent the 

separation between the atoms 0k and 1k`. These lattice 
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sums can be reduced to combinations of sums over cubic 

Bravais lattices (8) and therefore can be obtained from the 

tables published by Born and Mishra (9). The sums needed 

in the present calculations are listed below in the Table 1.  

 

 
Table 1. Lattice sums required in the present work. 

 

Sum Lattice 

s.c. f.c.c. b.c.c. 

  
    8.4019 1.8067 0.45383 

   
    0.1914 0.1409 0.03746 

   
    2.4178 0.3204 0.07636 

  
    6.9458 0.80012 0.12784 

   
    0.7818 0.06458 0.01140 

   
    2.1589 0.13754 0.01982 

 

The calculations for the NaCl and CsCl structures 

follow; 

 

 

2. NaCl structure 
 

From equations 1 and 2, we can write 
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or        ⁄       ⁄  (3) 

where                            (4) 

                           (5) 

 

Assuming the total lattice potential to be 

 

         ⁄              (6) 

 

The first term on the right hand side is the long range 

electrostatic Madeling energy term, the second term 

represents the short range overlap repulsive interactions; 

and the last term represents the VdW interactions. We 

obtain the equilibrium condition in the form 

 

       ⁄        ⁄       ⁄      ⁄       ⁄  (7) 

 

With 

 

       ⁄     ⁄           ⁄             
 

The expressions for the second order elastic constants 

can be derived following either the method of finite 

deformation or that of the long wavelength limit. We 

obtain 
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where the last term with the square bracket in each 

expression represents the VdW Contribution and can be 

denoted by   
 . The repulsive force parameter B is already 

defined and 

 

       ⁄             ⁄      
 

One can prove from equations (9), (10) and (7) that 

C12 = C44 as should be the case for a central potential. One 

can also prove that the bulk modulus K derived from 

potential (6) is given by 

 

          ⁄      ⁄             
 

as obtained from equation (8) and (9).  

The differences between the numerical coefficients in 

our equations and in the corresponding equations of 

Sangster and Dixon (6) are easily accounted for. The 

reason for these differences has been already explained. 

 

 

3. CsCl structure 
 

In case of the CsCl structure solids also we choose the 

edge length of the cubic unit cell equal to 2a. With this 

choice the VdW potential parameters are 

 

                            (11) 

 

                             (12) 

 

The total potential per unit cell can again be expressed 

by 

 

         ⁄     ( √ )      ⁄       ⁄  (13) 

 

The equilibrium condition is given by 

 

      ⁄        ⁄       ⁄      ⁄       ⁄  }(14) 

 

and the elastic constants by 
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The repulsive potential parameters A and B in these 

equations are defined by 

 

      ⁄             ⁄     √  

      ⁄     ⁄           ⁄     √         

 

Equations (7 to 10) represent the equilibrium 

condition and expressions for the three elastic constants 

for the rigid ion or a simple shell model of the NaCl 

structure solids. Equations (14 to 17) are the 

corresponding equations for the CsCl structure. 

 

 

4. Discussion 
 

The three body modifications of these equations can 

be obtained in a straightforward manner by simply adding 

the VdW terms to the corresponding expressions of the 

three body force rigid ion model or the three body force 

shell model equations. This is a welcome situation since it 

enables us to express the higher order elastic constants or 

other properties depending on higher order derivatives of 

the lattice potential without introducing any new 

disposable parameters. In particular we can follow the 

scheme proposed by Garg et al (10) in which now the 

elastic constants would have to be effectively replaced by 

 

        
               

       

 

This scheme is certainly superior to Sangster and 

Dixon’s as in their case the short range parameters are 

derived from a potential obtained by adding the NN and 

NNN VdW terms to the usual Born-Mayer potential. Such 

a situation doesn’t allow us to obtain a simple relationship 

between the short range force parameters derived from say 

the third and fourth order derivatives as for example used 

by Garg et al. We therefore, expect that our scheme will 

prove quite useful in studies of the TOEC, FOEC and 

hence of the pressure derivatives of the SOEC as also of 

the piezoelectric and photoelastic behaviors of ionic solids. 

 
 
5. Numerical applications 
 

Numerical application of the equations given above 

yield good values for the cohesive energies and to some 

extent for the pressure derivatives of the bulk modulus 

also with certain significant limitations related to the 

values of the individual elastic constants. As a matter of 

fact the VdW parameters themselves show wide variations 

in calculations based on different physical conditions (1-

3). If one uses the recent most values of VdW parameters 

C++, C-- and C+- determined by Shankar et al (3) to evaluate 

C44 one obtains large negative contributions leading to 

negative values for the shear modulus for many of the 

alkali halides. This is obviously impossible. The theory is 

therefore not capable of yielding accurate values of B0, B0` 

and B0`` etc from either fundamental or phenomenological 

calculations. The equations derived above should thus be 

used for determining the potential parameters from the 

knowledge of B0, B0` and B0`` as derived from the P-V 

data. 

 

6. Conclusion 
 

The complete Van der Waals (VdW) contributions to 

the equilibrium condition and the second order elastic 

constant for NaCl and CsCl structure alkali halides have 

been derived in this paper. Our expressions have the 

advantage that they can be directly added to the 

corresponding expressions derived for the rigid ion or shell 

models of ionic solids with or without the three body 

interactions to obtain the correct expressions for models 

based on the lattice energy including the VdW potential 

explicitly. 
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